Blow-Up Rate Estimates for a System of Reaction-Diffusion Equations with Gradient Terms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term

In this work, we study the blow-up and global solutions for a quasilinear reaction–diffusion equation with a gradient term and nonlinear boundary condition:      (g(u)) t = ∆u + f (x, u, |∇u| 2 , t) in D × (0, T), ∂u ∂n = r(u) on ∂D × (0, T), u(x, 0) = u 0 (x) > 0 in D, where D ⊂ R N is a bounded domain with smooth boundary ∂D. Through constructing suitable auxiliary functions and using ma...

متن کامل

The Blow-up Rate Estimates for a System of Heat Equations with Nonlinear Boundary Conditions

This paper deals with the blow-up properties of positive solutions to a system of two heat equations ut = ∆u, vt = ∆v in BR× (0, T ) with Neumann boundary conditions ∂u ∂η = e vp , ∂v ∂η = e uq on ∂BR × (0, T ), where p, q > 1, BR is a ball in Rn, η is the outward normal. The upper bounds of blow-up rate estimates were obtained. It is also proved that the blow-up occurs only on the boundary.

متن کامل

Blow-Up of Solutions for a Class of Reaction-Diffusion Equations with a Gradient Term under Nonlinear Boundary Condition

The blow-up of solutions for a class of quasilinear reaction-diffusion equations with a gradient term ut = div(a(u)b(x)∇u)+ f (x,u, |∇u|2, t) under nonlinear boundary condition ∂u/∂n + g(u) = 0 are studied. By constructing a new auxiliary function and using Hopf’s maximum principles, we obtain the existence theorems of blow-up solutions, upper bound of blow-up time, and upper estimates of blow-...

متن کامل

Blow-up for a reaction-diffusion equation with variable coefficient

We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

Non–simultaneous Blow–up for a Semilinear Parabolic System with Localized Reaction Terms

In this paper, we study positive blow-up solutions of the semilinear parabolic system with localized reactions ut = Δu+ vr + up(0,t), vt = Δv + us + vq(0,t) in the ball B = {x ∈ R N : |x| < R} , under the homogeneous Dirichlet boundary condition. It is shown that nonsimultaneous blow-up may occur according to the value of p , q , r , and s ( p,q,r,s > 1). We also investigate blow-up rates of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2019

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2019/9807876